Antimicrobial and Antibiofilm Effect of Brazilian Green Propolis Aqueous Extract against Dental Anaerobic Bacteria
Green propolis may represent a promising therapeutic alternative against dental anaerobic pathogens because of its antimicrobial action. This study aimed to evaluate the antimicrobial and antibiofilm actions of Brazilian green propolis aqueous extract (BGP-AqExt) against dental anaerobic bacteria. T...
Saved in:
Published in: | Molecules (Basel, Switzerland) Vol. 27; no. 23; p. 8128 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
22-11-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Green propolis may represent a promising therapeutic alternative against dental anaerobic pathogens because of its antimicrobial action. This study aimed to evaluate the antimicrobial and antibiofilm actions of Brazilian green propolis aqueous extract (BGP-AqExt) against dental anaerobic bacteria. The minimum inhibitory concentration (MIC) and minimum microbicide concentration (MMC) of the extract were determined against the standard strains (ATCC) of
,
,
and
. BGP-AqExt was chemically characterized by high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis. Antibiofilm action was measured by MTT and crystal violet tests. The data were statistically analyzed by ANOVA and Tukey (5%) tests. The extract had antimicrobial action against all tested anaerobic bacteria, with an MIC value of 55 mg/mL for all bacteria, an MMC of 27.5 mg/mL for
and
and 55 mg/mL for
. Chemically, BGP-AqExt is composed of quercetin, gallic acid, caffeic and p-coumaric acid, drupani, kaempferol and Artepillin C. Significant reductions in biomass and metabolic action of biofilms were found after BGP-AqExt application. Therefore, BGP-AqExt has an antimicrobial and antibiofilm effect against dental anaerobic bacteria. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27238128 |