Extension of inverse q-Fourier transform via conformal mapping

We extend the generalized q-Fourier transform to include arbitrary values of the non-extensive parameter q. The procedure involves conformal mapping and provides the inverse q-Fourier transform if the extended q-Fourier exists. In addition, the extended q-Fourier transform preserves linearity and it...

Full description

Saved in:
Bibliographic Details
Published in:Physica A Vol. 524; pp. 106 - 111
Main Authors: Nakamura, Gilberto M., de Martini, Alexandre H., Martinez, Alexandre S.
Format: Journal Article
Language:English
Published: Elsevier B.V 15-06-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend the generalized q-Fourier transform to include arbitrary values of the non-extensive parameter q. The procedure involves conformal mapping and provides the inverse q-Fourier transform if the extended q-Fourier exists. In addition, the extended q-Fourier transform preserves linearity and it q-generalizes translation symmetry. As an application, we argue the q parameter can be extracted from log-periodic signals. •Linear and invertible q-Fourier transform.•Generalized q-periods.•Dirac delta function.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2019.03.016