An efficient protocol for the generation of monocyte derived dendritic cells using serum-free media for clinical applications in post remission AML patients

Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on "good manufacture practices" (GMP), have recently been used and see...

Full description

Saved in:
Bibliographic Details
Published in:Annals of clinical and laboratory science Vol. 44; no. 2; p. 180
Main Authors: da Silva Simoneti, Gisele, Saad, Sara Teresinha Olalla, Gilli, Simone Cristina Olenscki
Format: Journal Article
Language:English
Published: United States 2014
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on "good manufacture practices" (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
ISSN:1550-8080