Anti-inflammatory effect, antibiotic potentiating activity against multidrug-resistant strains of Escherichia coli and Staphylococcus aureus, and evaluation of antibiotic resistance mechanisms by the ibuprofen derivative methyl 2-(-4-isobutylphenyl)propanoate
The prevalence of multidrug-resistant (MDR) bacteria and the limited efficacy of current available antibiotics cause every year approximately 700 000 deaths per year. This study aimed to evaluate the anti-inflammatory effect and antibacterial potential of the ibuprofen derivative Methyl 2-(-4-isobut...
Saved in:
Published in: | Microbial pathogenesis Vol. 170; p. 105697 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prevalence of multidrug-resistant (MDR) bacteria and the limited efficacy of current available antibiotics cause every year approximately 700 000 deaths per year. This study aimed to evaluate the anti-inflammatory effect and antibacterial potential of the ibuprofen derivative Methyl 2-(-4-isobutylphenyl)propanoate (MET-IBU). The molecular structure of MET-IBU was confirmed by Nuclear Magnetic Resonance (NMR) and, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy. Our in vivo study using adult zebrafish model demonstrated that the ibuprofen derivative MET-IBU also possesses anti-inflammatory effect, and in vitro antibacterial activity assays showed that in the association of ampicillin, norfloxacin, and gentamicin with MET-IBU occurred reduction in the minimum inhibitory concentration (MIC) for MDR bacterial strains of Escherichia coli 06 and Staphylococcus aureus 10, indicating a potentiating in the growth inhibition of these pathogenic bacteria. Regarding the strain of Staphylococcus aureus K2068 (overexpressing mepA gene), a potentiation of ethidium bromide was found in the association with MET-IBU, indicating the action of this compound on the efflux pump mechanism present in this strains. This result corroborates the molecular docking study that indicated a high affinity of the MET-IBU with the MepA efflux pump. It was also noticed an antibiotic potentiating activity in the association MET-IBU with norfloxacin against strains of Staphylococcus aureus 1199B (overexpressing norA gene) when compared to the norfloxacin control. This enhanced antibiotic effect of MET-IBU is associated with a second resistance mechanism, which is due to the modification in the topoisomerase enzyme. These results bring attention to the ibuprofen derivative MET-IBU as possible candidate for the development of new options for the treatment of bacterial infections with protective anti-inflammatory action.
[Display omitted]
•Anti-inflammatory and antibacterial evaluation of an ibuprofen derivative.•Antibiotic inhibition mechanisms were evaluated.•Antibiotic potentiation occurs when MET-IBU is associated with antibiotics.•MET-IBU presents anti-inflammatory activity in adult zebrafish model.•MET-IBU possesses inhibitory effect on the MepA efflux pump. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2022.105697 |