In vitro germination, protocorm formation and plantlet development of mature versus immature seeds from several Ophrys species (Orchidaceae)

We investigated the effect of genotype, seed maturity and culture medium on the in vitro germination and development of protocorms and plantlets from seeds of 13 different Ophrys species (O. apifera, O. attica, O. cornuta, O. delfinensis, O. ferrum-equinum, O. lutea, O. mammosa, O. speculum, O. spru...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports Vol. 23; no. 5; pp. 284 - 290
Main Authors: Kitsaki, C.K, Zygouraki, S, Ziobora, M, Kintzios, S
Format: Journal Article
Language:English
Published: Berlin Springer 01-11-2004
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the effect of genotype, seed maturity and culture medium on the in vitro germination and development of protocorms and plantlets from seeds of 13 different Ophrys species (O. apifera, O. attica, O. cornuta, O. delfinensis, O. ferrum-equinum, O. lutea, O. mammosa, O. speculum, O. spruneri, O. umbilicata, O. argolica, O. irricolor and O. tenthredinifera) collected in Greece, some of which are endemic to this country. Mature seeds (10 months after collection) and immature seeds (2 months after anthesis) were cultured in a coconut milk-enriched or a pineapple-enriched medium (CEM or PEM, respectively). The highest percentage of callogenesis (96%) was observed in immature seeds of O. delphinensis in the CEM, while the highest percentage of protocorm formation (52%) was observed in mature seeds of O. spuneri in the CEM. Protocorm formation was significantly lower in immature seeds than in mature seeds in both culture media. Eventually almost all of the transferred protocorms developed to plantlets, which later formed minitubers. PEM appeared to be the most suitable for the development of minitubers from plantlets. All of the factors investigated--as well as their interactions--significantly affected callogenesis and protocorm formation. The results are discussed with the perspective of applying an improved protocol for in vitro seed germination and plantlet formation in several under-utilized Ophrys species.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0721-7714
1432-203X
DOI:10.1007/s00299-004-0841-8