Noble Metal Modification of CdS-Covered CuInS2 Electrodes for Improved Photoelectrochemical Activity and Stability

In this paper, efficient and stable photoelectrochemical (PEC) hydrogen (H2) evolution using copper indium sulfide (CuInS2) thin film electrodes was studied. Modification with a cadmium sulfide (CdS) layer led to improved charge separation at the interface between CuInS2 and CdS; however, the photoc...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts Vol. 10; no. 9; p. 949
Main Authors: Toshihiro Takashima, Yukitaka Fujishiro, Hiroshi Irie
Format: Journal Article
Language:English
Published: MDPI AG 01-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, efficient and stable photoelectrochemical (PEC) hydrogen (H2) evolution using copper indium sulfide (CuInS2) thin film electrodes was studied. Modification with a cadmium sulfide (CdS) layer led to improved charge separation at the interface between CuInS2 and CdS; however, the photocorrosive nature of CdS induced poor stability of the photocathode. Further surface coating with an electrodeposited Pt layer over the CdS-covered CuInS2 photocathode prevented the CdS layer from making contact with the electrolyte solution, and enabled efficient PEC H2 evolution without appreciable degradation. This indicates that the Pt layer functioned not only as a reaction site for H2 evolution, but also as a protection layer. In addition, it was found that surface protection using a noble metal layer was also effective for stable PEC carbon dioxide (CO2) reduction when appropriate noble metal cocatalysts were selected. When Au or Ag was used, carbon monoxide was obtained as a product of PEC CO2 reduction.
ISSN:2073-4344
DOI:10.3390/catal10090949