Noble Metal Modification of CdS-Covered CuInS2 Electrodes for Improved Photoelectrochemical Activity and Stability
In this paper, efficient and stable photoelectrochemical (PEC) hydrogen (H2) evolution using copper indium sulfide (CuInS2) thin film electrodes was studied. Modification with a cadmium sulfide (CdS) layer led to improved charge separation at the interface between CuInS2 and CdS; however, the photoc...
Saved in:
Published in: | Catalysts Vol. 10; no. 9; p. 949 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, efficient and stable photoelectrochemical (PEC) hydrogen (H2) evolution using copper indium sulfide (CuInS2) thin film electrodes was studied. Modification with a cadmium sulfide (CdS) layer led to improved charge separation at the interface between CuInS2 and CdS; however, the photocorrosive nature of CdS induced poor stability of the photocathode. Further surface coating with an electrodeposited Pt layer over the CdS-covered CuInS2 photocathode prevented the CdS layer from making contact with the electrolyte solution, and enabled efficient PEC H2 evolution without appreciable degradation. This indicates that the Pt layer functioned not only as a reaction site for H2 evolution, but also as a protection layer. In addition, it was found that surface protection using a noble metal layer was also effective for stable PEC carbon dioxide (CO2) reduction when appropriate noble metal cocatalysts were selected. When Au or Ag was used, carbon monoxide was obtained as a product of PEC CO2 reduction. |
---|---|
ISSN: | 2073-4344 |
DOI: | 10.3390/catal10090949 |