A Class of Discrete Memristor Chaotic Maps Based on the Internal Perturbation

Further exploration into the influence of a memristor on the behavior of chaotic systems deserves attention. When constructing memristor chaotic systems, it is commonly believed that increasing the number of memristors will lead to better system performance. This paper proposes a class of chaotic ma...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 15; no. 8; p. 1574
Main Authors: Yihyis, Worke Adugna, He, Shaobo, Tang, Zhouqing, Wang, Huihai
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Further exploration into the influence of a memristor on the behavior of chaotic systems deserves attention. When constructing memristor chaotic systems, it is commonly believed that increasing the number of memristors will lead to better system performance. This paper proposes a class of chaotic maps with different discrete memristors, achieved through internal perturbation based on the Sine map. The I-V curve of the discrete memristor has a symmetrical structure. The dynamic characteristics of the designed system are analyzed using the chaotic attractor phase diagram, Lyapunov exponent (LE) spectrum, and bifurcation diagram. Numerical simulations demonstrate that internal perturbations of discrete memristors enhance the Sine map’s chaotic characteristics, expand the chaos range, and improve the ergodicity and LE value. Moreover, the type of discrete memristors has a significant impact on the dynamic characteristics of the system, while the number of discrete memristors has little influence. Therefore, in this paper, a direction for the design of a discrete memristor chaotic system is provided. Finally, a discrete memristor chaotic map with a simple structure and better performance is selected. Based on this, a pseudo-random sequence generator is designed, and the generated sequence passes the National Institute of Standards and Technology (NIST) test.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15081574