Evaluating keyword selection methods for WEBSOM text archives
The WEBSOM methodology, proven effective for building very large text archives, includes a method that extracts labels for each document cluster assigned to nodes in the map. However, the WEBSOM method needs to retrieve all the words of all the documents associated to each node. Since maps may have...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering Vol. 16; no. 3; pp. 380 - 383 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-03-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The WEBSOM methodology, proven effective for building very large text archives, includes a method that extracts labels for each document cluster assigned to nodes in the map. However, the WEBSOM method needs to retrieve all the words of all the documents associated to each node. Since maps may have more than 100,000 nodes and since the archive may contain up to seven million documents, the WEBSOM methodology needs a faster alternative method for keyword selection. Presented here is such an alternative method that is able to quickly deduce meaningful labels per node in the map. It does this just by analyzing the relative weight distribution of the SOM weight vectors and by taking advantage of some characteristics of the random projection method used in dimensionality reduction. The effectiveness of this technique is demonstrated on news document collections. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2003.1262193 |