Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering

In this paper, spark plasma sintering (SPS), after hot isostatically pressing (HIP) method was reported as a new approach to prepare bulk polycrystalline samples of Ti3AlC2. The ternary carbide was fabricated by spark plasma sintering (SPS) at a pressure of 22 MPa and temperature of 1250°C. The raw...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science Vol. 38; no. 14; pp. 3111 - 3115
Main Authors: AIGUO ZHOU, WANG, Chang-An, YONG HUNAG
Format: Journal Article
Language:English
Published: Heidelberg Springer 15-07-2003
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, spark plasma sintering (SPS), after hot isostatically pressing (HIP) method was reported as a new approach to prepare bulk polycrystalline samples of Ti3AlC2. The ternary carbide was fabricated by spark plasma sintering (SPS) at a pressure of 22 MPa and temperature of 1250°C. The raw materials, elemental powders of Ti, Al and activated carbon, were pretreated in the following different ways prior to SPS: one way was to obtain porous Ti3AlC2 by self-propagating high-temperature synthesis (SHS) from mixture of Ti, Al and C, and then densify the product by SPS; the second way was to synthesize Al4C3 from Al and C firstly, and then mix powders of Ti and C with synthesized Al4C3 to fabricate bulk Ti3AlC2 by SPS. Obtained polycrystalline Ti3AlC2 ceramics had excellent mechanical properties: density was 4.24 ± 0.02 g/cm3, flexural strength was 552 ± 30 MPa and fracture toughness (KIC) was 9.1 ± 0.3 MPa · m1/2. It could be concluded that SPS method was a useful method to synthesize bulk Ti3AlC2 with excellent properties in a very short time and easily sintering process. The optimal conditions to synthesize Ti3AlC2 were also discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-2461
1573-4803
DOI:10.1023/A:1024777213910