Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy

Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is st...

Full description

Saved in:
Bibliographic Details
Published in:Neurophotonics (Print) Vol. 9; no. 1; p. 015004
Main Authors: Wyser, Dominik G, Kanzler, Christoph M, Salzmann, Lena, Lambercy, Olivier, Wolf, Martin, Scholkmann, Felix, Gassert, Roger
Format: Journal Article
Language:English
Published: United States Society of Photo-Optical Instrumentation Engineers 01-01-2022
S P I E - International Society for
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level (ICCsingle  =  0.81 and correlation r  =  0.81). SCR increased the reproducibility from 0.64 to 0.81 (ICCsingle) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2329-423X
2329-4248
DOI:10.1117/1.NPh.9.1.015004