Competition between cross-linking and force-induced local conformational changes determines the structure and mechanics of labile protein networks
[Display omitted] Folded protein hydrogels are emerging as promising new materials for medicine and healthcare applications. Folded globular proteins can be modelled as colloids which exhibit site specific cross-linking for controlled network formation. However, folded proteins have inherent mechani...
Saved in:
Published in: | Journal of colloid and interface science Vol. 678; no. Pt C; pp. 1259 - 1269 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
15-01-2025
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Folded protein hydrogels are emerging as promising new materials for medicine and healthcare applications. Folded globular proteins can be modelled as colloids which exhibit site specific cross-linking for controlled network formation. However, folded proteins have inherent mechanical stability and unfolded in response to an applied force. It is not yet understood how colloidal network theory maps onto folded protein hydrogels and whether it models the impact of protein unfolding on network properties. To address this, we study a hybrid system which contains folded proteins (patchy colloids) and unfolded proteins (biopolymers). We use a model protein, bovine serum albumin (BSA), to explore network architecture and mechanics in folded protein hydrogels. We alter both the photo-chemical cross-linking reaction rate and the mechanical properties of the protein building block, via illumination intensity and redox removal of robust intra-protein covalent bonds, respectively. This dual approach, in conjunction with rheological and structural techniques, allows us to show that while reaction rate can ‘fine-tune’ the mechanical and structural properties of protein hydrogels, it is the force-lability of the protein which has the greatest impact on network architecture and rigidity. To understand these results, we consider a colloidal model which successfully describes the behaviour of the folded protein hydrogels but cannot account for the behaviour observed in force-labile hydrogels containing unfolded protein. Alternative models are needed which combine the properties of colloids (folded proteins) and biopolymers (unfolded proteins) in cross-linked networks. This work provides important insights into the accessible design space of folded protein hydrogels without the need for complex and costly protein engineering, aiding the development of protein-based biomaterials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2024.09.183 |