Neuromorphic computing using non-volatile memory
Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networ...
Saved in:
Published in: | Advances in physics: X Vol. 2; no. 1; pp. 89 - 124 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis
01-01-2017
Taylor & Francis Ltd Taylor & Francis Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and 'Memcomputing'. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices - including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs - have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability. |
---|---|
ISSN: | 2374-6149 2374-6149 |
DOI: | 10.1080/23746149.2016.1259585 |