Sustained Release of Epidermal Growth Factor Accelerates Wound Repair
Epidermal growth factor (EGF) is a potent mitogen in vitro, but its biological role is less clear. The vulnerary effects of EGF were evaluated in a model of wound repair, the polyvinyl alcohol sponge implanted subcutaneously in rats. EGF was purified to homogeneity by reverse-phase HPLC and quantifi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 82; no. 21; pp. 7340 - 7344 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
National Academy of Sciences of the United States of America
01-11-1985
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epidermal growth factor (EGF) is a potent mitogen in vitro, but its biological role is less clear. The vulnerary effects of EGF were evaluated in a model of wound repair, the polyvinyl alcohol sponge implanted subcutaneously in rats. EGF was purified to homogeneity by reverse-phase HPLC and quantified by receptor binding assay and amino acid analysis. Preliminary data showed moderate promotion of granulation tissue formation by daily injections of 10 μ g of EGF. To test the hypothesis that long-term exposure to EGF is required for complete cellular response, the factor was incorporated into pellets releasing 10 or 20 μ g of biologically active EGF per day, and the pellets were embedded within the sponges. Slow release of EGF caused a dramatic increase in the extent and organization of the granulation tissue at day 7, a doubling in the DNA content, and 33% increases in protein content and wet weight, as compared with placebo controls. Although collagen content was also increased by almost 50%, the relative rate of collagen synthesis remained the same, suggesting that the morphological and biochemical increase in collagen resulted from increased numbers of fibroblasts rather than a specific stimulation of collagen synthesis. These results indicate that the local sustained presence of EGF accelerates the process of wound repair, specifically neovascularization, organization by fibroblasts, and accumulation of collagen. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.82.21.7340 |