A novel 3D volumetric method for directly quantifying porosity and pore space morphology in flocculated suspended sediments

Flocculated suspended sediments (flocs) are found in a variety of environments globally, and their transport and behavior bear substantial importance to several industries including fisheries, aquaculture, and shipping. Additionally, the modelling of their behavior is important for estuarine and coa...

Full description

Saved in:
Bibliographic Details
Published in:MethodsX Vol. 10; p. 101975
Main Authors: Lawrence, TJ, Carr, SJ, Manning, AJ, Wheatland, JAT, Bushby, AJ, Spencer, KL
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-01-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flocculated suspended sediments (flocs) are found in a variety of environments globally, and their transport and behavior bear substantial importance to several industries including fisheries, aquaculture, and shipping. Additionally, the modelling of their behavior is important for estuarine and coastal flood prediction and defence, and the process of flocculation occurs in other unrelated industries such as paper and chemical production. Floc porosity is conventionally assessed using inferential indirect or proxy data approaches. These methods underestimate floc porosity % by c. 30% and cannot measure the micro-scale complexity of these pore spaces and networks, rendering inputs to models sub-optimal. This study introduces a novel 3D porosity and pore space quantification protocol, that produces directly quantified porosity % and pore space data.•3D floc data from micro-CT scanning is segmented volumetrically•This segmented volume is quantified to extract porosity and several pore space parameters from the floc structure [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2215-0161
2215-0161
DOI:10.1016/j.mex.2022.101975