Spherical reflectors for space based telescopes

The realization of a large, space-based 10+ meter class telescope for far-infrared/TeraHertz studies has long been a goal of NASA. Such a telescope could study the origins of stars, planets, molecular clouds, and galaxies; providing a much needed means of following-up on tantalizing results from rec...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE MTT-S International Microwave Symposium (IMS) pp. 1884 - 1887
Main Authors: Walket, Christopher K., Smith, I. Steve, Goldsmith, Paul F., O'Dougherty, Stefan, Takashima, Yuzuru, Daewook Kim
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The realization of a large, space-based 10+ meter class telescope for far-infrared/TeraHertz studies has long been a goal of NASA. Such a telescope could study the origins of stars, planets, molecular clouds, and galaxies; providing a much needed means of following-up on tantalizing results from recent successful missions such as Spitzer, Herschel, SOFIA, and, in the near future, JWST. Indeed, Herschel began its life in the US space program as the Large Deployable Reflector (LDR) - to be assembled in low Earth orbit by shuttle astronauts. Escalating costs and smaller federal budget allocations resulted in a downsizing of the mission. However, by combining break-through technologies utilizing spherical reflectors and inflatable structures, the dream of a 10+ meter class space telescope can be realized. The same telescope technology can also be used to perform sensitive, high spectral and spatial resolution limb sounding studies of the Earth's atmosphere in greenhouse gases such as CO, ClO, O3, and water, as well as serve as a high flying hub for any number of telecommunications and surveillance activities. In our paper we discuss the prospects of using inflatable, spherical reflectors to realize a ~25 meter TeraHertz Space telescope (TST).
DOI:10.1109/MWSYM.2017.8059024