Nonlinearity in the Mechanical Response of Rubber as Investigated by High-Frequency DMA
Nonlinear material response is analysed with the Fourier transform (FT) of the raw signal measured by a high-frequency dynamic mechanical analyzer (HF DMA). It is known from rheological behaviour of elastomers that reinforcing fillers additionally induce nonlinearity in an already inherently nonline...
Saved in:
Published in: | Polymers Vol. 11; no. 4; p. 581 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-04-2019
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonlinear material response is analysed with the Fourier transform (FT) of the raw signal measured by a high-frequency dynamic mechanical analyzer (HF DMA). It is known from rheological behaviour of elastomers that reinforcing fillers additionally induce nonlinearity in an already inherently nonlinear system. This behaviour is often described in terms of a mechanical response of strain sweeps, essentially the transition from the linear viscoelastic (LVE) to the nonlinear viscoelastic (NVE) region. In the current investigation, the NVE region could be observed with respect to frequency under low-amplitude deformation. A foldover effect was observed, whereby the material exhibited a nonlinear dependency in relation to the increment of the filler amount above the percolation threshold. In addition, an apparent superharmonic resonance was observed within higher orders of vibrational modes which is further indication of nonlinearity. In this paper, the analytical approach is presented as a novel method to characterise the behaviour of the polymer⁻filler interaction by HF DMA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym11040581 |