Molecular analysis of the gene family of the signal recognition particle (SRP) RNA of tomato
The sequence variants of the signal recognition particle (SRP) RNA gene family from four tomato cultivars have been isolated and characterized which indicated the existence of SRP RNA pseudogenes. Sequence analysis revealed two conserved sequence motifs in the upstream region, a TATA-like box and an...
Saved in:
Published in: | Plant molecular biology Vol. 31; no. 1; pp. 113 - 125 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-04-1996
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sequence variants of the signal recognition particle (SRP) RNA gene family from four tomato cultivars have been isolated and characterized which indicated the existence of SRP RNA pseudogenes. Sequence analysis revealed two conserved sequence motifs in the upstream region, a TATA-like box and an upstream sequence element (USE), 'TCCCACATCG', both located at a conserved distance to the transcription start point. These elements are identical to the DNA-dependent RNA polymerase III (pol III)-specific promoters of U-rich small nuclear RNA (UsnRNA) genes of plants. Moreover, T-rich stretches are found at the 3' end of the coding regions of the SRP RNA genes which could act as typical pol III termination signals. These findings and recent results from site-directed mutation analysis of the SRP RNA genes from Arabidopsis thaliana indicate that, in contrast to mammalian systems, plant pol III SRP RNA genes are most probably regulated by external promoter elements. According to the identical promoter organization between plant U3-, U6snRNA, MRP-like RNA and SRP RNA genes, one can group these genes into the 'pol III(EXT)USE' subclass of externally regulated USE-dependent pol III genes. |
---|---|
Bibliography: | F30 9700642 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/BF00020611 |