Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
Quantum Sci. Technol. 6, 044003 (2021) MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new r...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
07-04-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum Sci. Technol. 6, 044003 (2021) MAGIS-100 is a next-generation quantum sensor under construction at Fermilab
that aims to explore fundamental physics with atom interferometry over a
100-meter baseline. This novel detector will search for ultralight dark matter,
test quantum mechanics in new regimes, and serve as a technology pathfinder for
future gravitational wave detectors in a previously unexplored frequency band.
It combines techniques demonstrated in state-of-the-art 10-meter-scale atom
interferometers with the latest technological advances of the world's best
atomic clocks. MAGIS-100 will provide a development platform for a future
kilometer-scale detector that would be sufficiently sensitive to detect
gravitational waves from known sources. Here we present the science case for
the MAGIS concept, review the operating principles of the detector, describe
the instrument design, and study the detector systematics. |
---|---|
DOI: | 10.48550/arxiv.2104.02835 |