Characterizing the bacterial consortium ASDF capable of catabolic degradation of fluoranthene and other mono- and poly-aromatic hydrocarbons
In this study, a bacterial consortium ASDF was developed, capable of degrading fluoranthene (a non-alternant poly-aromatic hydrocarbon). It comprised of three bacterial strains: Pseudomonas sp. ASDF1, Burkholderia sp. ASDF2 and Mycobacterium sp. ASDF3 capable of degrading 100 mg/L of fluoranthene un...
Saved in:
Published in: | 3 Biotech Vol. 10; no. 11; p. 491 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-11-2020
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a bacterial consortium ASDF was developed, capable of degrading fluoranthene (a non-alternant poly-aromatic hydrocarbon). It comprised of three bacterial strains:
Pseudomonas
sp. ASDF1,
Burkholderia
sp. ASDF2 and
Mycobacterium
sp. ASDF3 capable of degrading 100 mg/L of fluoranthene under experimentally defined and optimum conditions (37 °C, pH 7.0, 150 rpm) within 7 days. Consortium had metabolized fluoranthene as sole source of carbon and energy with maximum degradation rate of 0.52 mg/L/h and growth rate of 0.054/h. Fluoranthene degradation is an aerobic process, therefore with increasing the gyratory shaking from 50 to 150 rpm, degradation was concurrently enhanced by 7.1-fold. The synthetic surfactants SDS and CTAB had antagonistic effect on fluoranthene degradation (decreased up to 2.8-fold). The proficiency of consortium was assessed for its inherent ability to degrade seven other hydrocarbons both individually as well as in mixture. The degradation profile was studied using HPLC and the detection of two degraded intermediates (salicylic acid and derivatives of phthalic acid) suggested that fluoranthene degradation might have occurred via ortho- and meta-cleavage pathways. The competency of consortium was further validated through simulated microcosm studies, which showed 96% degradation of fluoranthene in soil ecosystem under the ambient conditions. Hence, the study suggested that the consortium ASDF has an inherent potential for its wide applicability in bioremediation of hydrocarbon-contaminated sites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-020-02478-w |