Sequential Blind Source Extraction For Quasi-Periodic Signals With Time-Varying Period

A novel second-order-statistics-based sequential blind extraction algorithm for blind extraction of quasi-periodic signals, with time-varying period, is introduced in this paper. Source extraction is performed by sequentially converging to a solution that effectively diagonalizes autocorrelation mat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 56; no. 3; pp. 646 - 655
Main Authors: Tsalaile $^\ast$, Thato, Sameni, Reza, Sanei, Saeid, Jutten, Christian, Chambers, Jonathon
Format: Journal Article
Language:English
Published: United States IEEE 01-03-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel second-order-statistics-based sequential blind extraction algorithm for blind extraction of quasi-periodic signals, with time-varying period, is introduced in this paper. Source extraction is performed by sequentially converging to a solution that effectively diagonalizes autocorrelation matrices at lags corresponding to the time-varying period, which thereby explicitly exploits a key statistical nonstationary characteristic of the desired source. The algorithm is shown to have fast convergence and yields significant improvement in signal-to-interference ratio as compared to when the algorithm assumes a fixed period. The algorithm is further evaluated on the problem of separation of a heart sound signal from real-world lung sound recordings. Separation results confirm the utility of the introduced approach, and listening tests are employed to further corroborate the results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2008.2002141