Sequential Blind Source Extraction For Quasi-Periodic Signals With Time-Varying Period
A novel second-order-statistics-based sequential blind extraction algorithm for blind extraction of quasi-periodic signals, with time-varying period, is introduced in this paper. Source extraction is performed by sequentially converging to a solution that effectively diagonalizes autocorrelation mat...
Saved in:
Published in: | IEEE transactions on biomedical engineering Vol. 56; no. 3; pp. 646 - 655 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-03-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel second-order-statistics-based sequential blind extraction algorithm for blind extraction of quasi-periodic signals, with time-varying period, is introduced in this paper. Source extraction is performed by sequentially converging to a solution that effectively diagonalizes autocorrelation matrices at lags corresponding to the time-varying period, which thereby explicitly exploits a key statistical nonstationary characteristic of the desired source. The algorithm is shown to have fast convergence and yields significant improvement in signal-to-interference ratio as compared to when the algorithm assumes a fixed period. The algorithm is further evaluated on the problem of separation of a heart sound signal from real-world lung sound recordings. Separation results confirm the utility of the introduced approach, and listening tests are employed to further corroborate the results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2008.2002141 |