Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species

High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip technology are amongst the most widely used, although GeneChip arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to im...

Full description

Saved in:
Bibliographic Details
Published in:Plant methods Vol. 1; no. 1; p. 10
Main Authors: Hammond, John P, Broadley, Martin R, Craigon, David J, Higgins, Janet, Emmerson, Zoe F, Townsend, Henrik J, White, Philip J, May, Sean T
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 09-11-2005
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip technology are amongst the most widely used, although GeneChip arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip array is available, using a GeneChip array designed for Arabidopsis thaliana (L.) Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM) probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P) stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ and may be used to facilitate transcriptomic analyses of a wide range of plant and animal species in the absence of custom arrays.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1746-4811
1746-4811
DOI:10.1186/1746-4811-1-10