Low Dose Coagulant and Local Soil Ballast Effectively Remove Cyanobacteria (Microcystis) from Tropical Lake Water without Cell Damage
The combination of a low dose of coagulant with a ballast, also known as “flock and sink,” has been proposed as a lake restoration and cyanobacteria bloom management strategy. The effectiveness of this technique using aluminum sulfate (alum) as a coagulant and a local soil (LS) from Thailand as a ba...
Saved in:
Published in: | Water (Basel) Vol. 13; no. 2; p. 111 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-01-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combination of a low dose of coagulant with a ballast, also known as “flock and sink,” has been proposed as a lake restoration and cyanobacteria bloom management strategy. The effectiveness of this technique using aluminum sulfate (alum) as a coagulant and a local soil (LS) from Thailand as a ballast in eutrophic water dominated by positively buoyant Microcystis colonies collected from a tropical lake was investigated by measuring changes in chlorophyll-a (chl-a), pH, and zeta potential. Cell integrity was also evaluated using scanning electron microscopy. Results showed that alum alone could reduce chl-a (up to 60% to 83%) at doses (higher than 3 to 6 mg Al/L) dependent on the initial pH (7.6 to 8.2) and initial chl-a concentration (138 to 615 µg/L) of the lake water but resulted in morphological changes to cellular structure and generally required a dose that reduced pH to <7. LS ballast alone was able to reduce chl-a concentrations (up to 26% at highest dose of 400 mg/L) and caused no significant changes to pH or zeta potential. Combining a low dose of alum (2 mg Al/L) with some amount of LS ballast (50 to 400 mg/L) created an interaction effect that resulted in 81 to 88% reduction in chl-a without changes to zeta potential or morphological changes to cellular structure. Flock and sink may serve a niche role in lake restoration when positively buoyant cyanobacteria are present in the water column during time of treatment. This research showed that an 800% increase in ballast dose resulted in about an 8% reduction in chl-a when combined with 2 mg Al/L of alum. Therefore, it is recommended that ballast dose should be determined by considering its phosphorus sorption capacity and the potentially releasable phosphorus in the lake sediment in order to realize long-term reductions in sediment nutrient release. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w13020111 |