Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus irinotecan in a glioblastoma mouse model

Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Be...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 13; p. 1009484
Main Authors: Tran, Thi-Anh-Thuy, Kim, Young-Hee, Duong, Thi-Hoang-Oanh, Thangaraj, JayaLakshmi, Chu, Tan-Huy, Jung, Shin, Kim, In-Young, Moon, Kyung-Sub, Kim, Young-Jin, Lee, Tae-Kyu, Lee, Chul Won, Yun, Hyosuk, Lee, Je-Jung, Lee, Hyun-Ju, Lee, Kyung-Hwa, Jung, Tae-Young
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 10-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Bev) plus irinotecan (Iri) against glioblastoma multiforme (GBM) were investigated. For the experimental design, NK cells were expanded and activated by K562 cells expressing the OX40 ligand and membrane-bound IL-18 and IL-21. The effects of Bev and Iri on the proliferation and NK ligand expression of GBM cells were evaluated through MTT assay and flow cytometry. The cytotoxic effects of NK cells against Bev plus Iri-treated GBM cells were also predicted the LDH assay . The therapeutic effect of different injected NK cell routes and numbers combined with the different doses of Bev and Iri was confirmed according to tumor size and survival in the subcutaneous (s.c) and intracranial (i.c) U87 xenograft NOD/SCID IL-12Rγ mouse model. The presence of injected-NK cells in tumors was detected using flow cytometry and immunohistochemistry . As a result, Iri was found to affect the proliferation and NK ligand expression of GBM cells, while Bev did not cause differences in these cellular processes. However, the administration of Bev modulated Iri efficacy in the i.c U87 mouse model. NK cells significantly enhanced the cytotoxic effects against Bev plus Iri-treated GBM cells Although the intravenous (IV) injection of NK cells in combination with Bev plus Iri significantly reduced the tumor volume in the s.c U87 mouse model, only the direct intratumorally (IT) injection of NK cells in combination with Bev plus Iri elicited delayed tumor growth in the i.c U87 mouse model. Tumor-infiltrating NK cells were detected after IV injection of NK cells in both s.c and i.c U87 mouse models. In conclusion, the potential therapeutic effect of NK cells combined with Bev plus Iri against GBM cells was limited in this study. Accordingly, further research is required to improve the accessibility and strength of NK cell function in this combination treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Peter Brossart, University of Bonn, Germany
Reviewed by: Adeleh Taghi Khani, Beckman Research Institute, United States; Eiichi Ishikawa, University of Tsukuba, Japan
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2022.1009484