Using Genetic Algorithm in Outlier Detection for Regression Model
يعتبر تحليل الانحدار الخطي من أكثر الأساليب الإحصائية استخداما في تحليل البيانات في اغلب التطبيقات. في بعض الأحيان تحتوي البيانات قيد البحث على مجموعة من القيم الشاذة ويكون من الضروري جدا تشخيص هذه القيم لضمان صحة التحليل الإحصائي. في هذا البحث استخدمنا الخوارزمية الجينية مع ثلاث أنواع من دوال الهدف...
Saved in:
Published in: | al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil Vol. 27; no. 3; pp. 136 - 142 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
جامعة الموصل - كلية التربية
01-06-2018
College of Education for Pure Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | يعتبر تحليل الانحدار الخطي من أكثر الأساليب الإحصائية استخداما في تحليل البيانات في اغلب التطبيقات. في بعض الأحيان تحتوي البيانات قيد البحث على مجموعة من القيم الشاذة ويكون من الضروري جدا تشخيص هذه القيم لضمان صحة التحليل الإحصائي. في هذا البحث استخدمنا الخوارزمية الجينية مع ثلاث أنواع من دوال الهدف وهي معيار اكاكي للمعلومات معيار بيز للمعلومات ومعيار هانان-كيون للمعلومات لتشخيص مشكلة التقنع والإخفاء للقيم الشاذة في نموذج الانحدار الخطي. تم استخدام مجموعتين من البيانات المدروسة مسبقا والمعتمدة عالميا في بحثنا هذا تم التوصل إلى أن استخدام الخوارزمية الجينية في تشخيص القيم المقنعة والمخفية مقارنة باستخدام معيار أكاكي ومعيار هافانركون للمعلومات كدوال للهدف مقارنة بمعيار بيز للمعلومات. |
---|---|
ISSN: | 1812-125X 2664-2530 |
DOI: | 10.33899/edusj.2018.159314 |