Hydrothermal Synthesis of Chitosan and Tea Tree Oil on Plain and Satin Weave Cotton Fabrics

The paper aimed at enhancing the antimicrobial activity of chitosan by using tea tree essential oil with the purpose of durably finishing cotton fabrics for use in a hospital environment. The influence of crosslinkers and catalysts on the possibility of obtaining stable bonds using hydrothermal in s...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 15; no. 14; p. 5034
Main Authors: Flinčec Grgac, Sandra, Tesla, Tea, Čorak, Ivana, Žuvela Bošnjak, Franka
Format: Journal Article
Language:English
Published: Basel MDPI AG 20-07-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper aimed at enhancing the antimicrobial activity of chitosan by using tea tree essential oil with the purpose of durably finishing cotton fabrics for use in a hospital environment. The influence of crosslinkers and catalysts on the possibility of obtaining stable bonds using hydrothermal in situ synthesis between cellulosic material and chitosan with and without tea tree essential oil was investigated in detail. The morphology of the sample surface before and after the treatment and textile care cycle was investigated using a field emission scanning electron microscopy (FE-SEM) and indicated the presence of chitosan and a thin film on all treated samples, which showed durability of the treatment. The FTIR spectra obtained by Fourier transform infrared spectroscopy (FTIR) using attenuated total reflection measurement technique (ATR) analysis, showed that all the samples tested recorded physicochemical changes in the structure. The analysis of the samples on the goniometer proved the hydrophilicity of the materials, with a film forming on the surface of the treated samples, which is extremely beneficial given the end use of dressing samples to promote wound healing. The presence of a significant amount of bound chitosan with tea tree oil was confirmed by measuring the mass per unit area of the samples after the treatment and textile care cycles. The results of antimicrobial efficacy show that the materials treated with chitosan were resistant to bacteria and fungi in most cases, but only the samples treated in Bath I showed a zone of inhibition against the fungus Candida albicans, indicating the positive effect of tea tree essential oil.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15145034