Predicting the effect of fouling organisms and climate change on integrated shellfish aquaculture
Aquaculture industry represents a continuously growing sector playing a fundamental role in pursuing United Nation's goals. Increasing sea-surface temperatures, the growth of encrusting species and current cage cleaning practices proved to affect the productivity of commercial species. Here, th...
Saved in:
Published in: | Marine pollution bulletin Vol. 201; p. 116167 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aquaculture industry represents a continuously growing sector playing a fundamental role in pursuing United Nation's goals. Increasing sea-surface temperatures, the growth of encrusting species and current cage cleaning practices proved to affect the productivity of commercial species. Here, through a Dynamic Energy Budget application under two different IPCC scenarios, we investigate the long-term effects of Pennaria disticha fragments' on Mytilus galloprovincialis' functional traits as a result of cage cleaning practices. While Climate-Change did not exert a marked effect on mussels' Life-History traits, the simulated effect of cage cleanings highlighted a positive effect on total weight, fecundity and time to commercial size. West-Mediterranean emerged as the most affected sector, with Malta, Montenegro, Morocco, Syria, Tunisia and Turkey between the top-affected countries. These outcomes confirm the reliability of a DEB-approach in projecting at different spatial and temporal scale eco-physiological results, avoiding the limitation of short-term studies and the difficulties of long-term ones.
[Display omitted]
•Our approach predicts long-term effects overcoming short-term study limitations.•The FT-DEB model projects at wider spatial/temporal scales eco-physiological results.•Our model identifies positive patterns under considered climate change scenarios.•Regional trends highlight Lebanon, Malta and Montenegro as the most influenced.•Informative predictions can guide aquaculture, aiding species and site planning. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0025-326X 1879-3363 |
DOI: | 10.1016/j.marpolbul.2024.116167 |