VIX constant maturity futures trading strategy: A walk-forward machine learning study

This study employs seven advanced machine learning approaches to conduct numerical predictions of the next-day returns of VIX constant-maturity futures (VIX CMFs) using the term structure information derived from VIX CMFs. Based on precise numerical predictions, this study proposes a new Constrained...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 19; no. 4; p. e0302289
Main Authors: Wang, Sangyuan, Li, Keran, Liu, Yaling, Chen, Yijun, Tang, Xianbo
Format: Journal Article
Language:English
Published: United States Public Library of Science 19-04-2024
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study employs seven advanced machine learning approaches to conduct numerical predictions of the next-day returns of VIX constant-maturity futures (VIX CMFs) using the term structure information derived from VIX CMFs. Based on precise numerical predictions, this study proposes a new Constrained-Mean-Variance Portfolio Optimization (C-MVO) trading strategy and tests it against a benchmark long-short trading strategy to evaluate the profitability of the machine learning numerical predictions. This study applies three unique feature sets, each incrementally incorporating the VIX CMFs' term structure features, to individually examine the predictive ability of the seven machine learning models and their backtesting performance. Over a comprehensive 11-year period, the experiment adheres to a strict walk-forward expanding-window methodology for both training and backtesting. The predictive and backtesting results show that four of the seven machine learning models attain a prediction information ratio greater than 0.02, with an average prediction information ratio of 0.037. This result suggests that the VIX CMFs term structure features have predictive power for the next-day returns of VIX CMFs. Moreover, the average C-MVO information ratio is 0.623, and the long-short strategy information ratio is 0.404. This increase in the information ratio under the C-MVO strategy validates the effectiveness of the machine learning models and the C-MVO strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0302289