3D bacterial cellulose biofilms formed by foam templating
Bacterial cellulose is a remarkable fibrous structural component of biofilms, as it forms a mechanically strong hydrogel with high water adsorption capabilities. Additionally, bacterial cellulose is biocompatible and therefore of potential interest for skin regeneration and wound healing application...
Saved in:
Published in: | NPJ biofilms and microbiomes Vol. 4; no. 1; pp. 21 - 6 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
05-09-2018
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacterial cellulose is a remarkable fibrous structural component of biofilms, as it forms a mechanically strong hydrogel with high water adsorption capabilities. Additionally, bacterial cellulose is biocompatible and therefore of potential interest for skin regeneration and wound healing applications. However, bacterial cellulose produced through conventional production processes at water–air interfaces lack macroporosity control, which is crucial for regenerative tissue applications. Here we demonstrate a straightforward and efficient approach to form a macroporous bacterial cellulose foam by foaming a mannitol-based media with a bacterial suspension of
Gluconoacetobacter xylinus
. The bacterial suspension foam is stabilized with Cremodan as a surfactant and viscosified with Xanthan preventing water drainage. Further foam stabilization occurs through cellulose formation across the foam network. As bacterial cellulose formation is influenced by the viscosity of the growth media, we fine-tuned the concentration of Xanthan to allow for bacterial cellulose formation while avoiding water drainage caused by gravity. With this simple approach, we were able to design 3D bacterial cellulose foams without any additional processing steps. We argue that this templating approach can further be used to design foamy biofilms for biotechnological approaches, increasing the surface area and therefore the yield by improving the exchange of nutrients and metabolic products.
Bacterial cellulose: fine control for useful foams
A simple and efficient method to control the structure of bacterial cellulose foams could advance uses in tissue regeneration and other biotechnology applications. Bacterial cellulose is a natural fibrous component of biofilms. It forms a strong biocompatible “hydrogel” that can absorb large quantities of water and dissolved substances. Exploiting its medical and commercial potential has been limited by lack of control over a foam’s microporous structure. Patrick Rühs and colleagues at the Swiss Federal Institute of Technology in Zurich (ETH Zurich) devised a chemical procedure to control the pore formation and stability of cellulose foams derived from the bacterium
Gluconoacetobacter xylinus
. The fine control their generally applicable procedure achieves could greatly improve the chemical exchange properties of the foams. This could lead to materials for healing wounds and biotechnology applications such as bioremediation of pollutants. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2055-5008 2055-5008 |
DOI: | 10.1038/s41522-018-0064-3 |