The extraordinary thermal stability of EstA from S. islandicus is independent of post translational modifications

Enzymes from thermophilic and hyper‐thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a gen...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 26; no. 9; pp. 1819 - 1827
Main Authors: Stiefler‐Jensen, Daniel, Schwarz‐Linnet, Troels, de Lichtenberg, Casper, Nguyen, Tam T. T. N., Rand, Kasper D., Huang, Li, She, Qunxin, Teilum, Kaare
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-09-2017
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzymes from thermophilic and hyper‐thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post‐translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts.
Bibliography:Daniel Stiefler‐Jensen and Troels Schwarz‐Linnet contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.3220