Path integration following temporal lobectomy in humans
Path integration, a component of spatial navigation, is the process used to determine position information on the basis of information about distance and direction travelled derived from self-motion cues. Following on from studies in the animal literature that seem to support the role of the hippoca...
Saved in:
Published in: | Neuropsychologia Vol. 39; no. 5; pp. 452 - 464 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-01-2001
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Path integration, a component of spatial navigation, is the process used to determine position information on the basis of information about distance and direction travelled derived from self-motion cues. Following on from studies in the animal literature that seem to support the role of the hippocampal formation in path integration, this facility was investigated in humans with focal brain lesions. Thirty-three neurosurgical patients (17 left temporal lobectomy, LTL; 16 right temporal lobectomy, RTL) and 16 controls were tested on a number of blindfolded tasks designed to investigate path integration and on a number of additional control tasks (assessing mental rotation and left–right orientation). In a test of the ability to compute a homing vector, the subjects had to return to the start after being led along a route consisting of two distances and one turn. Patients with RTL only were impaired at estimating the turn required to return to the start. On a second task, route reproduction was tested by requiring the subjects to reproduce a route consisting of two distances and one turn; the RTL group only were also impaired at reproducing the turn, but this impairment did not correlate with the homing vector deficit. There were no group differences on tasks where subjects were required to reproduce a single distance or a single turn. The results indicate that path integration is impaired in RTL patients only and suggest that the right temporal lobe plays a role in idiothetic spatial memory. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0028-3932 1873-3514 |
DOI: | 10.1016/S0028-3932(00)00140-8 |