4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway
Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processe...
Saved in:
Published in: | Respiratory physiology & neurobiology Vol. 331; p. 104348 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-01-2025
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.
•4 hydroxychalcone displayed anti-inflammatory and antioxidant potential in asthmatic mice.•4 hydroxychalcone reduced histopathological alterations, IgE secretion, and airway inflammation.•4 hydroxychalcone attenuated oxidative stress in asthmatic mice.•4 hydroxychalcone activated Nrf2/GPx4 pathway in lung of asthmatic mice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1569-9048 1878-1519 1878-1519 |
DOI: | 10.1016/j.resp.2024.104348 |