The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis
The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater. Tr...
Saved in:
Published in: | Environmental science & technology Vol. 50; no. 20; pp. 11386 - 11393 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
18-10-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater. Traditionally, both river water and seawater compartments have a fixed intermembrane distance. Especially the river water compartment thickness contributes to a large extent to the resistance of the stack due to its low conductivity. In our cyclic approach, two stages define the principle of the breathing concept; the initial stage, where both compartments (seawater and river water) have the same thickness and the compressed stage, where river water compartments are compressed by expanding the seawater compartments. This movement at a tunable frequency allows reducing stack resistance by decreasing the thickness of the river water compartment without increasing permanently the pumping losses. The breathing stacks clearly benefit from the lower resistance values and low pumping power required, obtaining high net power densities over a much broader flow rate range. The high frequency breathing stack (15 cycles/min) shows a maximum net power density of 1.3 W/m2. Although the maximum gross and net power density ever registered (2.9 W/m2 and 1.5 W/m2, respectively) is achieved for a fixed 120 μm intermembrane distance stack (without movement of the membranes), it is only obtained at a very narrow flow rate range due to the high pressure drops at small intermembrane distance. The breathing cell concept offers a unique feature, namely physical movement of the membranes, and thus the ability to adapt to the operational conditions and water quality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.6b02668 |