BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation
Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here...
Saved in:
Published in: | Geophysical research letters Vol. 44; no. 21; pp. 11,051 - 11,061 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article Web Resource |
Language: | English |
Published: |
United States
John Wiley & Sons, Inc
16-11-2017
Blackwell Publishing Ltd John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine‐terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine‐based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
Key Points
We present a comprehensive, seamless bed topography across the ice‐ocean margin around Greenland
Two to 4 times more glaciers have calving fronts grounded below 200 m compared to previous mappings
Total ice volume of Greenland is 2.99 ± 0.02 times 106 km3, yielding a potential sea level rise of 7.42 m, 7 cm greater than previous estimates |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-85035102064 |
ISSN: | 0094-8276 1944-8007 1944-8007 |
DOI: | 10.1002/2017GL074954 |