Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users

Individuals with lower-limb amputation can use running specific prostheses (RSP) that store and then return elastic energy during stance. However, it is unclear whether varying the stiffness category of the same RSP affects spring-mass behaviour during self-selected, submaximal speed running in indi...

Full description

Saved in:
Bibliographic Details
Published in:Gait & posture Vol. 98; pp. 153 - 159
Main Authors: Barnett, C T, De Asha, A R, Skervin, T K, Buckley, J G, Foster, R J
Format: Journal Article
Language:English
Published: England 01-10-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Individuals with lower-limb amputation can use running specific prostheses (RSP) that store and then return elastic energy during stance. However, it is unclear whether varying the stiffness category of the same RSP affects spring-mass behaviour during self-selected, submaximal speed running in individuals with unilateral transtibial amputation. The current study investigates how varying RSP stiffness affects limb stiffness, running performance, and associated joint kinetics in individuals with a unilateral transtibial amputation. Kinematic and ground reaction force data were collected from eight males with unilateral transtibial amputation who ran at self-selected submaximal speeds along a 15 m runway in three RSP stiffness conditions; recommended habitual stiffness (HAB) and, following 10-minutes of familiarisation, stiffness categories above (+1) and below (-1) the HAB. Stance-phase centre of mass velocity, contact time, limb stiffness' and joint/RSP work were computed for each limb across RSP stiffness conditions. With increased RSP stiffness, prosthetic limb stiffness increased, whilst intact limb stiffness decreased slightly (p<0.03). Centre of mass forward velocity during stance-phase (p<0.02) and contact time (p<0.04) were higher in the intact limb and lower in the prosthetic limb but were unaffected by RSP stiffness. Intact limb hip joint positive work increased for both the +1 and -1 conditions but remained unchanged across conditions in the prosthetic limb (p<0.02). In response to changes in RSP stiffness, there were acute increased mechanical demands on the intact limb, reflecting a reliance on the intact limb during running. However, overall running speed was unaffected, suggesting participants acutely adapted to an RSP of a non-prescribed stiffness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0966-6362
1879-2219
DOI:10.1016/j.gaitpost.2022.09.008