Eugenol and its liposome-based nano carrier reduce anxiety by inhibiting glyoxylase-1 expression in mice

The most common form of psycho-social dysfunction is anxiety with depression being related closely without any age bar. They are present with combined state of sadness, confusion, stress, fear etc. Glyoxalase system contains enzyme named glyoxalase 1 (GLO1).It is a metabolic pathway which detoxifies...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of biology Vol. 83; pp. e251219 - 6
Main Authors: Siyal, F J, Siddiqui, R A, Memon, Z, Aslam, Z, Nisar, U, Imad, R, Shah, M R
Format: Journal Article
Language:English
Published: Brazil Instituto Internacional de Ecologia 2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most common form of psycho-social dysfunction is anxiety with depression being related closely without any age bar. They are present with combined state of sadness, confusion, stress, fear etc. Glyoxalase system contains enzyme named glyoxalase 1 (GLO1).It is a metabolic pathway which detoxifies alpha-oxo-aldehydes, particularly methylglyoxal (MG). Methylglyoxal is mainly made by the breakdown of the glycolytic intermediates, glyceraldehyde-3-phosphates and dihydroxyacetone phosphate. Glyoxylase-1 expression is also related with anxiety behavior. A casual role or GLO-1 in anxiety behavior by using viral vectors for over expression in the anterior cingulate cortex was found and it was found that local GLO-1 over expression increased anxiety behavior. The present study deals with the molecular mechanism of protective activity of eugenol against anxiolytic disorder. A pre-clinical animal study was performed on 42 BALB/c mice. Animals were given stress through conventional restrain model. The mRNA expression of GLO-1 was analyzed by real time RT-PCR. Moreover, the GLO-1 protein expression was also examined by immunohistochemistry in whole brain and mean density was calculated. The mRNA and protein expressions were found to be increased in animals given anxiety as compared to the normal control. Whereas, the expressions were decreased in the animals treated with eugenol and its liposome-based nanocarriers in a dose dependent manner. However, the results were better in animals treated with nanocarriers as compared to the compound alone. It is concluded that the eugenol and its liposome-based nanocarriers exert anxiolytic activity by down-regulating GLO-1 protein expression in mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1519-6984
1678-4375
1678-4375
DOI:10.1590/1519-6984.251219