Antimicrobial activity of Mimosa caesalpiniifolia Benth and its interaction with antibiotics against Staphylococcus aureus strains overexpressing efflux pump genes

This study aimed to evaluate the antimicrobial activity of the dichloromethane fraction (DCMF) from the stem bark of Mimosa caesalpiniifolia and its effect on the activity of conventional antibiotics against Staphylococcus aureus strains overexpressing specific efflux pump genes. DCMF showed activit...

Full description

Saved in:
Bibliographic Details
Published in:Letters in applied microbiology Vol. 69; no. 1; pp. 57 - 63
Main Authors: Silva, S.W.C., Monção, N.B.N., Araújo, B.Q., Arcanjo, D.D.R., Ferreira, J.H.L., Lima Neto, J.S., Citó, A.M.G.L., de Siqueira Júnior, J.P., Kaatz, G.W., Barreto, H.M.
Format: Journal Article
Language:English
Published: England Oxford University Press 01-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to evaluate the antimicrobial activity of the dichloromethane fraction (DCMF) from the stem bark of Mimosa caesalpiniifolia and its effect on the activity of conventional antibiotics against Staphylococcus aureus strains overexpressing specific efflux pump genes. DCMF showed activity against S. aureus, Staphylococcus epidermidis and Candida albicans. Addition of DCMF at subinhibitory concentrations to the growth media enhanced the activity of norfloxacin, ciprofloxacin and ethidium bromide against S. aureus strains overexpressing norA suggesting the presence of efflux pump inhibitors in its composition. Similar results were verified for tetracycline against S. aureus overexpressing tetK, as well as, for ethidium bromide against S. aureus overexpressing qacC. These results indicate that M. caesalpiniifolia is a source of molecules able to modulate the fluoroquinolone‐ and tetracycline‐resistance in S. aureus probably by inhibition of NorA, TetK and QacC respectively. Significance and Impact of the Study Drug resistance is a common problem in patients with infectious diseases. Dichloromethane fraction from the stem bark of Mimosa caesalpiniifolia showed antimicrobial activity against Gram‐positive bacterium Staphylococcus aureus and against Candida albicans, but did not show activity against Gram‐negative specie Escherichia coli. Moreover, this fraction was able to potentiate the action of norfloxacin, ciprofloxacin and tetracycline against S. aureus strains overexpressing different efflux pump genes. Thus, Mimosa caesalpiniifolia is a source of efflux pump inhibitors which could be used in combination with fluoroquinolones or tetracycline in the treatment of infectious diseases caused by S. aureus strains overexpressing efflux pump genes. Significance and Impact of the Study:Drug resistance is a common problem in patients with infectious diseases. Dichloromethane fraction from the stem bark of Mimosa caesalpiniifolia showed antimicrobial activity against Gram‐positive bacterium Staphylococcus aureus and against Candida albicans, but did not show activity against Gram‐negative specie Escherichia coli. Moreover, this fraction was able to potentiate the action of norfloxacin, ciprofloxacin and tetracycline against S. aureus strains overexpressing different efflux pump genes. Thus, Mimosa caesalpiniifolia is a source of efflux pump inhibitors which could be used in combination with fluoroquinolones or tetracycline in the treatment of infectious diseases caused by S. aureus strains overexpressing efflux pump genes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-8254
1472-765X
DOI:10.1111/lam.13163