Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors

Severe and prolonged stress is the main environmental factor that precipitates depression, anxiety and cognitive dysfunctions. On the other hand, exposure to environmental enrichment (EE) has been shown to induce progressive plasticity in the brain and improve learning and memory in various neurolog...

Full description

Saved in:
Bibliographic Details
Published in:Progress in neuro-psychopharmacology & biological psychiatry Vol. 76; pp. 88 - 100
Main Authors: Shilpa, BM, Bhagya, V, Harish, G, Srinivas Bharath, MM, Shankaranarayana Rao, BS
Format: Journal Article
Language:English
Published: England Elsevier Inc 02-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Severe and prolonged stress is the main environmental factor that precipitates depression, anxiety and cognitive dysfunctions. On the other hand, exposure to environmental enrichment (EE) has been shown to induce progressive plasticity in the brain and improve learning and memory in various neurological and psychiatric disorders. It is not known whether exposure to enriched environment could ameliorate chronic immobilisation stress-induced cognitive deficits and altered molecular markers. Hence, in the present study we aimed to evaluate the effect of enriched environment on chronic immobilisation stress (CIS) associated changes in spatial learning and memory, behavioural measures of anxiety, depression and molecular markers as well as structural alterations. Male Wistar rats were subjected to chronic immobilisation stress for 2h/day/10days followed by 2weeks of exposure to EE. CIS resulted in weight loss, anhedonia, increased immobility, spatial learning and memory impairment, enhanced anxiety, and reduced expression of BDNF, VEGF, GFAP and glucocorticoid receptors (GR) in discrete brain regions. Interestingly, stressed rats exposed to enrichment ameliorated behavioural depression, spatial learning and memory impairment and reduced anxiety behaviour. In addition, EE restored BDNF, VEGF, GFAP and GR expression and normalized hypotrophy of dentate gyrus and hippocampus in CIS rats. In contrast, EE did not restore hypertrophy of the amygdalar complex. Thus, EE ameliorates stress-induced cognitive deficits by modulating the neurotrophic factors, astrocytes and glucocorticoid receptors in the hippocampus, frontal cortex and amygdala. •Enriched enrichment (EE) exhibited antidepressant activity in CIS model of depression.•EE ameliorates anxiety, spatial learning and memory impairments.•EE restored hippocampal hypotrophy not amygdala hypertrophy.•Enrichment up-regulates the expression of BDNF, VEGF, GFAP and GR.•Neuroprotective effect of EE is through modulation of BDNF, VEGF, GFAP and GR signalling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-5846
1878-4216
DOI:10.1016/j.pnpbp.2017.02.025