Regions of α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid receptor subunits that are permissive for the insertion of green fluorescent protein
The green fluorescent protein can be fused to the ends of a mature glutamate receptor subunit to produce functional, fluorescent receptors. However, there are good reasons to search for internal regions of receptor subunits that can tolerate green fluorescent protein insertion. First, internal inser...
Saved in:
Published in: | Neuroscience Vol. 141; no. 2; pp. 837 - 849 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-01-2006
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The green fluorescent protein can be fused to the ends of a mature glutamate receptor subunit to produce functional, fluorescent receptors. However, there are good reasons to search for internal regions of receptor subunits that can tolerate green fluorescent protein insertion. First, internal insertions of green fluorescent protein may produce functional, fluorescent subunits that traffic more correctly. Second, fluorescent proteins inserted near interacting surfaces of subunits could potentially create reagents suitable for fluorescence resonance energy transfer measurements. Finally, internal green fluorescent protein insertions could potentially produce subunits capable of signaling conformational changes through intrinsic changes in fluorescence intensity. To identify regions of receptor subunits that are permissive for green fluorescent protein insertion, we used a series of recombinant transposons to create fluorescent protein insertions in three α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid receptor subunits. A combined analysis of the relative fluorescence intensity and glutamate-gated ion channel function of 69 different green fluorescent protein fusion proteins identified permissive zones for the creation of bright and fully functional receptor subunits in the C-terminal portion of the amino terminal domain, the intracellular tail of the carboxy terminal domain, and within the pore-forming regions of the channel. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2006.04.052 |