Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients

The objective of this technical study was to evaluate the performance of an artificial intelligence (AI)-based system for clinical trials matching for a cohort of lung cancer patients in an Australian cancer hospital. A lung cancer cohort was derived from clinical data from patients attending an Aus...

Full description

Saved in:
Bibliographic Details
Published in:JAMIA open Vol. 3; no. 2; pp. 209 - 215
Main Authors: Alexander, Marliese, Solomon, Benjamin, Ball, David L, Sheerin, Mimi, Dankwa-Mullan, Irene, Preininger, Anita M, Jackson, Gretchen Purcell, Herath, Dishan M
Format: Journal Article
Language:English
Published: United States Oxford University Press 01-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this technical study was to evaluate the performance of an artificial intelligence (AI)-based system for clinical trials matching for a cohort of lung cancer patients in an Australian cancer hospital. A lung cancer cohort was derived from clinical data from patients attending an Australian cancer hospital. Ten phases I-III clinical trials registered on clinicaltrials.gov and open to lung cancer patients at this institution were utilized for assessments. The trial matching system performance was compared to a gold standard established by clinician consensus for trial eligibility. The study included 102 lung cancer patients. The trial matching system evaluated 7252 patient attributes (per patient median 74, range 53-100) against 11 467 individual trial eligibility criteria (per trial median 597, range 243-4132). Median time for the system to run a query and return results was 15.5 s (range 7.2-37.8). In establishing the gold standard, clinician interrater agreement was high (Cohen's kappa 0.70-1.00). On a per-patient basis, the performance of the trial matching system for eligibility was as follows: accuracy, 91.6%; recall (sensitivity), 83.3%; precision (positive predictive value), 76.5%; negative predictive value, 95.7%; and specificity, 93.8%. The AI-based clinical trial matching system allows efficient and reliable screening of cancer patients for clinical trials with 95.7% accuracy for exclusion and 91.6% accuracy for overall eligibility assessment; however, clinician input and oversight are still required. The automated system demonstrates promise as a clinical decision support tool to prescreen a large patient cohort to identify subjects suitable for further assessment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2574-2531
2574-2531
DOI:10.1093/jamiaopen/ooaa002