Strain and model dependent differences in inflammatory cell recruitment in mice
. Objective and design: The objective of this study was to determine genetic differences in inflammation in these distinct inbred mouse strains. Methods: Peritoneal leukocyte recruitment, matrix metalloproteinases and cytokines were quantified in A/J, 129/svJ, C57BL/6J, using thioglycollate or bioma...
Saved in:
Published in: | Inflammation research Vol. 57; no. 10; pp. 457 - 463 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
SP Birkhäuser Verlag Basel
01-10-2008
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | .
Objective and design:
The objective of this study was to determine genetic differences in inflammation in these distinct inbred mouse strains.
Methods:
Peritoneal leukocyte recruitment, matrix metalloproteinases and cytokines were quantified in A/J, 129/svJ, C57BL/6J, using thioglycollate or biomaterial implants as inflammatory stimuli.
Results:
In response to thioglycollate, A/J had significant decreases compared to C57BL/6J in both neutrophil (86 %) and macrophage (62 %) recruitment, and 129/svJ had a significant (43 %) decrease compared to C57BL/6J in macrophage recruitment. The reduced leukocyte recruitment corresponded to reduced matrix metalloproteinase-9. In the bioimplant model, 129/svJ had a 2-fold increase in neutrophil and macrophage recruitment compared to C57BL/6J, and the increased leukocyte recruitment corresponded to elevated cytokines, monocyte inhibitory protein-2 and monocyte chemoattractant protein-1, in the lavage compared to the values for C57BL/6J.
Conclusion:
Not only was leukocyte recruitment strain dependent, but the three strains had marked differences in metalloproteinases and cytokine response. In addition, there were model specific differences in the metalloproteinase and cytokine response to the two inflammatory stimuli. Thus, inflammatory cell recruitment is genetically determined and stimulus specific and may determine the susceptibility to complex diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1023-3830 1420-908X |
DOI: | 10.1007/s00011-008-7062-5 |