Effects of corn silage and grass silage in ruminant rations on diurnal changes of microbial populations in the rumen of dairy cows

Here, we examined diurnal changes in the ruminal microbial community and fermentation characteristics of dairy cows fed total mixed rations containing either corn silage (CS) or grass silage (GS) as forage. The rations, which consisted of 52% concentrate and 48% GS or CS, were offered for ad libitum...

Full description

Saved in:
Bibliographic Details
Published in:Anaerobe Vol. 42; pp. 6 - 16
Main Authors: Lengowski, Melanie B., Witzig, Maren, Möhring, Jens, Seyfang, Gero M., Rodehutscord, Markus
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-12-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, we examined diurnal changes in the ruminal microbial community and fermentation characteristics of dairy cows fed total mixed rations containing either corn silage (CS) or grass silage (GS) as forage. The rations, which consisted of 52% concentrate and 48% GS or CS, were offered for ad libitum intake over 20 days to three ruminal-fistulated lactating Jersey cows during three consecutive feeding periods. Feed intake, ruminal pH, concentrations of short chain fatty acids and ammonia in rumen liquid, as well as abundance change in the microbial populations in liquid and solid fractions, were monitored in 4-h intervals on days 18 and 20. The abundance of total bacteria and Fibrobacter succinogenes increased in solids in cows fed CS instead of GS, and that of protozoa increased in both solid and liquid fractions. Feeding GS favored numbers of F. succinogenes and Selenomonas ruminantium in the liquid fraction as well as the numbers of Ruminobacter amylophilus, Prevotella bryantii and ruminococci in both fractions. Minor effects of silage were detected on populations of methanogens. Despite quantitative changes in the composition of the microbial community, fermentation characteristics were less affected by forage source. These results suggest a functional adaptability of the ruminal microbiota to total mixed rations containing either GS or CS as the source of forage. Diurnal changes in microbial populations were primarily affected by feed intake and differed between species and fractions, with fewer temporal fluctuations evident in the solid than in the liquid fraction. Interactions between forage source and sampling time were of minor importance to most of the microbial species examined. Thus, diurnal changes of microbial populations and fermentative activity were less affected by the two silages. •The rumen microbiota in cows changes when substituting corn silage by grass silage.•Silage-dependent trends previously detected in vitro were confirmed in vivo.•A functional adaptability of the ruminal microbiota is shown.•Diurnal changes in microbial populations were primarily affected by feed intake.•Diurnal changes in microbial populations are less evident in the solid fraction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1075-9964
1095-8274
DOI:10.1016/j.anaerobe.2016.07.004