Observations of ammonia, nitric acid, and fine particles in a rural gas production region

Continuous measurements of the atmospheric trace gases ammonia (NH3) and nitric acid (HNO3) and of fine particle (PM2.5) ammonium (NH4+), nitrate (NO3−) and sulfate (SO42−) were conducted using a denuder/filter system from December 2006 to December 2011 at Boulder, Wyoming, a region of active gas pr...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment (1994) Vol. 83; pp. 80 - 89
Main Authors: Li, Yi, Schwandner, Florian M., Sewell, H. James, Zivkovich, Angela, Tigges, Mark, Raja, Suresh, Holcomb, Stephen, Molenar, John V., Sherman, Lincoln, Archuleta, Cassie, Lee, Taehyoung, Collett, Jeffrey L.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-02-2014
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continuous measurements of the atmospheric trace gases ammonia (NH3) and nitric acid (HNO3) and of fine particle (PM2.5) ammonium (NH4+), nitrate (NO3−) and sulfate (SO42−) were conducted using a denuder/filter system from December 2006 to December 2011 at Boulder, Wyoming, a region of active gas production. The average five year concentrations of NH3, HNO3, NH4+, NO3− and SO42− were 0.17, 0.19, 0.26, 0.32, and 0.48 μg m−3, respectively. Significant seasonal patterns were observed. The concentration of NH3 was higher in the summer than in other seasons, consistent with increased NH3 emissions and a shift in the ammonium nitrate (NH4NO3) equilibrium toward the gas phase at higher temperatures. High HNO3 concentrations were observed both in the summer and the winter. Elevated wintertime HNO3 production appeared to be due to active local photochemistry in a shallow boundary layer over a reflective, snow-covered surface. PM2.5 NH4+ and SO42− concentrations peaked in summer while NO3− concentrations peaked in winter. Cold winter temperatures drive the NH3–HNO3–NH4NO3 equilibrium toward particulate NH4NO3. A lack of NH3, however, frequently results in substantial residual gas phase HNO3 even under cold winter conditions. •Five years of measurements reveal low ammonia concentrations in western Wyoming.•Ammonia and nitric acid concentrations show a strong seasonal variation.•Ammonia concentrations peak in summer.•Nitric acid concentrations peak in summer and winter.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2013.10.007