Modelling Malaria Incidence in the Limpopo Province, South Africa: Comparison of Classical and Bayesian Methods of Estimation

Malaria infects and kills millions of people in Africa, predominantly in hot regions where temperatures during the day and night are typically high. In South Africa, Limpopo Province is the hottest province in the country and therefore prone to malaria incidence. The districts of Vhembe, Mopani and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health Vol. 17; no. 14; p. 5016
Main Authors: Sehlabana, Makwelantle Asnath, Maposa, Daniel, Boateng, Alexander
Format: Journal Article
Language:English
Published: Basel MDPI AG 13-07-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Malaria infects and kills millions of people in Africa, predominantly in hot regions where temperatures during the day and night are typically high. In South Africa, Limpopo Province is the hottest province in the country and therefore prone to malaria incidence. The districts of Vhembe, Mopani and Sekhukhune are the hottest districts in the province. Malaria cases in these districts are common and malaria is among the leading causes of illness and deaths in these districts. Factors contributing to malaria incidence in Limpopo Province have not been deeply investigated, aside from the general knowledge that the province is the hottest in South Africa. Bayesian and classical methods of estimation have been applied and compared on the effect of climatic factors on malaria incidence. Credible and confidence intervals from a negative binomial model estimated via Bayesian estimation and maximum likelihood estimation, respectively, were utilized in the comparison process. Overall assumptions underpinning each method were given. The Bayesian method appeared more robust than the classical method in analysing malaria incidence in Limpopo Province. The classical method identified rainfall and temperature during the night to be significant predictors of malaria incidence in Mopani, Vhembe and Waterberg districts. However, the Bayesian method found rainfall, normalised difference vegetation index, elevation, temperatures during the day and night to be the significant predictors of malaria incidence in Mopani, Sekhukhune and Vhembe districts of Limpopo Province. Both methods affirmed that Vhembe district is more susceptible to malaria incidence, followed by Mopani district. We recommend that the Department of Health and Malaria Control Programme of South Africa allocate more resources for malaria control, prevention and elimination to Vhembe and Mopani districts of Limpopo Province.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17145016