Magnetic Mesoporous Silica for Targeted Drug Delivery of Chloroquine: Synthesis, Characterization, and In Vitro Evaluation

Malaria is a dangerous tropical disease, with high morbidity in developing countries. The responsible parasite has developed resistance to the existing drugs; therefore, new drug delivery systems are being studied to increase efficacy by targeting hemozoin, a parasite paramagnetic metabolite. Herein...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutics Vol. 16; no. 3; p. 357
Main Authors: de Andrade, Rafaela, Schmidt, Rita de Cássia Dos Reis, Gomes, Leonardo Santos, Colina-Vegas, Legna, Hinrichs, Ruth, Vasconcellos, Marcos Antônio Zen, Costa, Tania Maria Haas, Deon, Monique, Villarreal, Wilmer, Benvenutti, Edilson Valmir
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-03-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Malaria is a dangerous tropical disease, with high morbidity in developing countries. The responsible parasite has developed resistance to the existing drugs; therefore, new drug delivery systems are being studied to increase efficacy by targeting hemozoin, a parasite paramagnetic metabolite. Herein, magnetic mesoporous silica (magMCM) was synthesized using iron oxide particles dispersed in the silica structure for magnetically driven behavior. The X-ray diffractogram (XRD) and Mössbauer spectra show patterns corresponding to magnetite and maghemite. Furthermore, Mössbauer spectroscopy revealed superparamagnetic behavior, attributed to single magnetic domains in particles smaller than 10 nm. Even in the presence of iron oxide particles, the hexagonal structure of MCM is clearly identified in XRD (low-angle region) and the channels are visible in TEM images. The drug chloroquine (CQ) was encapsulated by incipient wetness impregnation (magMCM-CQ). The N adsorption-desorption isotherms show that CQ molecules were encapsulated in the pores, without completely filling the mesopores. BET surface area values were 630 m g (magMCM) and 467 m g (magMCM-CQ). Encapsulated CQ exhibited rapid delivery (99% in 3 h) in buffer medium and improved solubility compared to the non-encapsulated drug, attributed to CQ encapsulation in amorphous form. The biocompatibility assessment of magMCM, magMCM-CQ, and CQ against MRC5 non-tumoral lung fibroblasts using the MTT assay after 24 h revealed no toxicity associated with magMCM. On the other hand, the non-encapsulated CQ and magMCM-CQ exhibited comparable dose-response activity, indicating a similar cytotoxic effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16030357