Dielectric chain driven by electron-hole plasma photoexcitation

All-dielectric nanophotonics based on high-index dielectric nanoparticles became a powerful platform for modern light science, providing many fascinating applications, including high-efficient nanoantennas and metamaterials. High-index dielectric nanostructures are of a special interest for nonlinea...

Full description

Saved in:
Bibliographic Details
Published in:2017 Days on Diffraction (DD) pp. 214 - 218
Main Authors: Li, Sergey V., Lepeshov, Sergey I., Saveleev, Roman S., Krasnok, Alexander E., Baranov, Denis G.
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:All-dielectric nanophotonics based on high-index dielectric nanoparticles became a powerful platform for modern light science, providing many fascinating applications, including high-efficient nanoantennas and metamaterials. High-index dielectric nanostructures are of a special interest for nonlinear nanophotonics, where they demonstrate special types of optical nonlinearity, such as electron-hole plasma photoexcitation, which are not inherent to plasmonic nanostructures. Here, we propose a novel type of highly tunable all-dielectric Yagi-Uda nanoantennas, consisting of a chain of Si nanoparticles exciting by an electric dipole source, which allow tuning of their radiating properties via electron-hole plasma photoexcitation. We theoretically and numerically demonstrate the tuning of radiation power patterns and the Purcell factor by additional pumping of several boundary nanoparticles with relatively low peak intensities of fs-laser.
DOI:10.1109/DD.2017.8168026