A Novel Time-Shared and LUT-Less Pipelined Architecture for LMS Adaptive Filter

This article presents a novel time-shared and lookup table (LUT)-less pipelined architecture for a least-mean-square (LMS) adaptive filter (ADF). The proposed approach first employs a time-shared architecture for the pipelined LMS ADF to compute each filter partial product and coefficient increment...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 28; no. 1; pp. 188 - 197
Main Authors: Sarma, Ranendra Kumar, Khan, Mohd. Tasleem, Shaik, Rafi Ahamed, Hazarika, Jinti
Format: Journal Article
Language:English
Published: New York IEEE 01-01-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a novel time-shared and lookup table (LUT)-less pipelined architecture for a least-mean-square (LMS) adaptive filter (ADF). The proposed approach first employs a time-shared architecture for the pipelined LMS ADF to compute each filter partial product and coefficient increment term using a single multiplier. Critical path analysis of this architecture is carried out to determine the pipeline requirements. Next, a novel LUT-less multiplier is suggested by exploiting the symmetries between the odd-multiples. Due to the symmetries between the odd-multiples, offset terms are added using an adder tree. For higher wordlength coefficients, only a few adders are required to generate the odd-multiples, and only one offset adder tree is required. Finally, a novel super-latch is developed to pipeline the LUT-less multiplier with adaptation delays of the pipelined LMS ADF. From the implementation results, it is found that the proposed design for the 32nd-order filter occupies 60.32% less area, consumes 61.93% less power, and utilizes 58.83% less sliced LUTs and 63.28% fewer flip-flops over the best existing design.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2019.2935399