New test beam results of 3D and pad detectors constructed with poly-crystalline CVD diamond
Chemical Vapour Deposition (CVD) diamond is being considered as a material for particle detectors in a harsh radiation environment. This article presents beam test results of 3D pixel detectors fabricated with poly-crystalline CVD diamonds. The cells of the devices had a size of 50µm×50µm with colum...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 958; p. 162675 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-04-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical Vapour Deposition (CVD) diamond is being considered as a material for particle detectors in a harsh radiation environment. This article presents beam test results of 3D pixel detectors fabricated with poly-crystalline CVD diamonds. The cells of the devices had a size of 50µm×50µm with columns 2.6µm in diameter. The cells were ganged in a 3×2 and 5×1 pattern to match the layouts of the pixel read-out electronics currently used in the CMS and ATLAS experiments at the Large Hadron Collider, respectively. In beam tests, using tracks reconstructed with a high precision tracking telescope, a tracking efficiency of 99.3% was achieved. The efficiency of both devices plateaus at a bias voltage of 30V. Also irradiated poly-crystalline CVD diamond pad detectors were investigated. In high rate beam tests with particle fluxes up to 20MHz/cm2 and irradiations up to 8 ⋅ 1015n/cm2 it was shown that the pulse height of irradiated poly-crystalline CVD diamonds does not depend on flux to the O2%. |
---|---|
Bibliography: | USDOE SC0010061 |
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2019.162675 |