High-Sensitivity Wireless Sensing Using Amorphous Magnetic Microwires

Glass-coated amorphous ferromagnetic microwires subjected to variations in mass loading and parallel wire arrays with 0.5-6-cm interwire spacing were found to deliver exceptional magnetomechanical and wireless giant magnetoimpedance (GMI) responses, in the kilohertz and microwave range, respectively...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 23; no. 2; pp. 1099 - 1104
Main Authors: Lejeune, B. T., Gueye, Papa Gorgui Birame, Sanz, Diego Archilla, Navarro, Elena, Vazquez, Manuel, del Real, Rafael Perez, Lewis, Laura H., Marin, Pilar
Format: Journal Article
Language:English
Published: New York IEEE 15-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glass-coated amorphous ferromagnetic microwires subjected to variations in mass loading and parallel wire arrays with 0.5-6-cm interwire spacing were found to deliver exceptional magnetomechanical and wireless giant magnetoimpedance (GMI) responses, in the kilohertz and microwave range, respectively. The microwires allow wireless quantification of microgram mass differences: the magnetomechanical resonance frequency measured in zero applied field demonstrates an approximately linear decrease of 3 Hz/<inline-formula> <tex-math notation="LaTeX">\mu \text{g} </tex-math></inline-formula>, and a sensitivity response that is ten times greater than that reported for commercial METGLAS-type amorphous magnetic ribbons of comparable length. Microwave giant magnetoimpedance data collected from planar arrays of parallel microwires show either constructive or destructive interference when compared to data obtained from a single microwire. The exceptional responsiveness of the glass-coated amorphous ferromagnetic microwires to mass loading and to geometric arrangement, along with their small diameter and ease of fabrication, highlights their promise for a wide variety of sensor applications, including biosensing, civil infrastructure monitoring, and high-throughput remote detection schemes.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2022.3225726