Wet synthesis of magnetically retrievable Mn/Nd co-doped cobalt ferrites for visible light-driven photocatalytic annihilation of azo dye
In this study, a surfactant assisted wet-chemical method was used to synthesize manganese and neodymium co-doped cobalt ferrite [Co1-xFe2-y O4 (x = Mn, y = Nd)]. The co-doping strategy was adopted to enhance the magnetic properties, tune the band gap, and hamper charge–recombination in the spinel fe...
Saved in:
Published in: | Materials science in semiconductor processing Vol. 178; p. 108462 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a surfactant assisted wet-chemical method was used to synthesize manganese and neodymium co-doped cobalt ferrite [Co1-xFe2-y O4 (x = Mn, y = Nd)]. The co-doping strategy was adopted to enhance the magnetic properties, tune the band gap, and hamper charge–recombination in the spinel ferrite during the photocatalytic application. Different dopant concentrations, namely Mn = Nd = 1.1 %, 2.2 %, 3.3 %, and, 4.4 %, were used to synthesize MNCF-1, MNCF-2, MNCF-3, and MNCF-4 samples, respectively. The pristine (CF) and co-doped samples (MNCF) were characterized via TGA, PXRD, Raman, FTIR, and UV/Vis techniques to examine the impact of co-doping on the various physicochemical and thermal properties. The optical study proposed the MNCF-4 sample with a band gap value of 2.88 eV as most suitable for visible-light harvesting. A dielectric study showed that co-doped ferrite with a higher dopant concentration (MNCF-4) exhibits boosted AC conductivity and substantially decreased leakage current as compared to the bare and co-doped samples. As the concentrations of the co-dopants increase, the coercivity field (Hc) decreases while the remanent magnetization (Mr) and saturation magnetization (Ms) increase. The MNCF-4 material exhibited the highest magnetic properties, ensuring its full and quick magnetic recovery at the completion of the photocatalytic process. In the context of photocatalytic applications, it was observed that the MNCF-4 catalyst exhibited a mineralization rate constant value of 0.016 min−1 for 92.5 % crystal violet (CV) dye. To mitigate the impact of dye sensitization, the photocatalytic efficiency of MNCF-4 material was assessed by using phenol as a representative colourless organic pollutant. The enhanced magnetic properties of the MNCF-4 catalyst enable its complete magnetic recovery and 90.2 % retention of the photocatalytic activities after five reusability tests.
[Display omitted]
•Co-doped and undoped ferrite nanostructures have been synthesized.•The structural, optical, magnetic, and electrical properties were examined.•Co-doping enhanced the magnetic properties and reduced the bang gap.•Doped ferrites showed excellent photocatalytic aptitude. |
---|---|
ISSN: | 1369-8001 1873-4081 |
DOI: | 10.1016/j.mssp.2024.108462 |