Utility of multi-omics data to inform genomic prediction of heifer fertility traits

Biologically informed single nucleotide polymorphisms (SNPs) impact genomic prediction accuracy of the target traits. Our previous genomics, proteomics, and transcriptomics work identified candidate genes related to puberty and fertility in Brahman heifers. We aimed to test this biological informati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science Vol. 100; no. 12
Main Authors: Tahir, Muhammad S, Porto-Neto, Laercio R, Reverter-Gomez, Toni, Olasege, Babatunde S, Sajid, Mirza R, Wockner, Kimberley B, Tan, Andre W L, Fortes, Marina R S
Format: Journal Article
Language:English
Published: United States Oxford University Press 01-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biologically informed single nucleotide polymorphisms (SNPs) impact genomic prediction accuracy of the target traits. Our previous genomics, proteomics, and transcriptomics work identified candidate genes related to puberty and fertility in Brahman heifers. We aimed to test this biological information for capturing heritability and predicting heifer fertility traits in another breed i.e., Tropical Composite. The SNP from the identified genes including 10 kilobases (kb) region on either side were selected as biologically informed SNP set. The SNP from the rest of the Bos taurus genes including 10-kb region on either side were selected as biologically uninformed SNP set. Bovine high-density (HD) complete SNP set (628,323 SNP) was used as a control. Two populations-Tropical Composites (N = 1331) and Brahman (N = 2310)-had records for three traits: pregnancy after first mating season (PREG1, binary), first conception score (FCS, score 1 to 3), and rebreeding score (REB, score 1 to 3.5). Using the best linear unbiased prediction method, effectiveness of each SNP set to predict the traits was tested in two scenarios: a 5-fold cross-validation within Tropical Composites using biological information from Brahman studies, and application of prediction equations from one breed to the other. The accuracy of prediction was calculated as the correlation between genomic estimated breeding values and adjusted phenotypes. Results show that biologically informed SNP set estimated heritabilities not significantly better than the control HD complete SNP set in Tropical Composites; however, it captured all the observed genetic variance in PREG1 and FCS when modeled together with the biologically uninformed SNP set. In 5-fold cross-validation within Tropical Composites, the biologically informed SNP set performed marginally better (statistically insignificant) in terms of prediction accuracies (PREG1: 0.20, FCS: 0.13, and REB: 0.12) as compared to HD complete SNP set (PREG1: 0.17, FCS: 0.10, and REB: 0.11), and biologically uninformed SNP set (PREG1: 0.16, FCS: 0.10, and REB: 0.11). Across-breed use of prediction equations still remained a challenge: accuracies by all SNP sets dropped to around zero for all traits. The performance of biologically informed SNP was not significantly better than other sets in Tropical Composites. However, results indicate that biological information obtained from Brahman was successful to predict the fertility traits in Tropical Composite population.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skac340